Chapter 2

Algorithms and Design of the Common Fixed-

 Point Arithmetic Operations
Addition Operation

Addition: is the most frequent operation performed by $A L U$. It also used for multiplication and division. Thus the speed of the adder unit is essential to the efficient operation of an execution unit.

Half Adder (HA)

Half adder circuit has two inputs: A and B , which add two input digits and generate a carry and sum.

Inputs		Outputs		Decimal
x	y	C	S	
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	0	2

$$
S=\bar{x} \cdot y+x \cdot \bar{y} \equiv x y \quad C=x \cdot y
$$

Figure: Half-adder

Full Adder (FA): is a combinational digital circuit with I/P bits x_{i} and y_{i} and incoming carry bit c_{i} and O/P sum bit s_{i} and outgoing carry bit c_{i+1}

x_{i}	y_{i}	c_{i}	$\mathrm{c}_{\mathbf{i}+1}$	$\mathrm{~s}_{\mathrm{i}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
& s_{i}=x_{i} y_{i}{ }^{\prime} c_{i}^{\prime}+x_{i}{ }^{\prime} y_{i} c_{i}^{\prime}+x_{i}^{\prime} y_{i}^{\prime} c_{i}+x_{i} y_{i} c_{i} \equiv x_{i} y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
\end{aligned}
$$

Implementations of FA

$$
\begin{aligned}
& x_{i}-\left[\log x_{i}^{\circ}\right. \\
& y_{i}-\left[30-y_{i}\right.
\end{aligned}
$$

x_{i}^{\prime}
Half-adder (HA)

(b)

(c)
velidy Ul a rA

$$
\begin{aligned}
T_{F A} & =\max \left(t_{c_{i+1},} t_{s_{i}}\right) \\
& =\max \left(2 t_{N A N D}, t_{X O R}\right)+t_{X O R}=2 t_{X O R}
\end{aligned}
$$

Implementations of FA (continue)

Delay of a FA

$$
\begin{aligned}
T_{F A} & =\max \left(t_{c_{i+1}} t_{S_{i}}\right) \\
& =\max \left(2 t_{N A N D}, t_{X O R}\right)+t_{X O R}=2 t_{X O R}
\end{aligned}
$$

Carry Ripple (propagate) Adder (CRA) or CPA

Ripple effect observed at sum outputs of adder until carry propagation is complete.

(a)

(b)

Fig.(2) a: An n- bit adder b: 1-bit adder (FA)

Figure: n - bit carry ripple adder ($C R A$)
The two (n - bit) operands (X and Y) are available at the same time.
*The carries propagate from the FA in position 0 (with inputs are x_{0} and y_{0}) to position i before that position produces correct sum and carry out bits. The worst case delay ($T_{\text {CRA }}$ of n-bit CRA

$$
\begin{aligned}
& T_{C R A}=(n-1) t_{c}+\max \left(t_{c}, t_{s}\right) \\
& =2(n-1) t_{N A N D}+\max \left(2 t_{\text {NAND }}, t_{X O R}\right)+t_{X O R}
\end{aligned}
$$

Example: Design an 8-bit CRA to add the following 2's complement numbers. Perform the addition on your design: $A=-93_{10} \quad B=126_{10}$

$$
\begin{aligned}
& A=+93_{10}=(01011101)_{2} \quad \text { Take } 1 \text { 's complement of } \mathbf{A}: A^{\prime}=(10100010) \\
& B=126_{10} \equiv(0111110)_{2}
\end{aligned}
$$

Figure: 8-bit CRA

Reducing the Adder Delay

The delay of the CRA can be reduced by the following approaches:

- Reducing the carry delay t_{c}. This is achieved in the switched CRA called Manchester adder.
- Changing the linear factor (n) to a smaller factor (such as n / k or $\log _{n}$). This is achieved by the carry skip adder, carry lookahead adder, prefix adder, carry select adder, and conditional sum adder.
- Changing the number representation system.

Carry Lookahead Adder (CLA)

The basic idea of CLA is to compute several carries, simultaneously. In the extreme, all carries could be computed at the same time.

Aside: The carry- out from a FA is: $c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}$

$$
c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
$$

From this equation, we can see that there are three mutually exclusive cases. These cases depends only on the input operands bits $\left(x_{i}\right.$ and $\left.y_{i}\right)$.

Case 1: carry $\mathrm{c}_{\mathrm{i}+1}$ generate if $\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{y}_{\boldsymbol{i}}=1 \longrightarrow g_{i}=\boldsymbol{x}_{i}$, yi
Case 2: carry c_{i} is propagated if x_{i} or $y_{i} \longrightarrow p_{i}=x_{i} \oplus$ yi
Case 3: carry c_{i} is killed if $x_{i}=y_{i}=0 \longrightarrow k_{i}=x_{i}{ }^{9} \cdot y_{i}{ }^{9}$

$$
\text { Or is alive if } a_{i}=k_{i}
$$

* Rewrite the carry- out of a FA:
${ }^{\prime} \bar{c}_{i+1}=\bar{g}_{i}+\bar{a}_{i} \bar{c}_{i}$ or $\bar{c}_{i+1}=\bar{g}_{i}+\bar{p}_{i} \bar{c}_{i}$

(n- bit) CLA Addition

Using the previous equations of $\mathrm{c}_{\mathrm{i}+1} \longrightarrow$ all carries can be determined in parallel from the input data X and Y and forced carry C_{0}.

Example: Design a 4-bit CLA \longrightarrow the carry equations are:

$$
\begin{aligned}
& c_{1}=g_{0}+c_{0} a_{0} \\
& c_{2}=g_{1}+c_{1} a_{1}=g_{1}+g_{0} a_{1}+c_{0} a_{0} a_{1} \\
& c_{3}=g_{2}+c_{2} a_{2}=g_{2}+g_{1} a_{2}+g_{0} a_{1} a_{2}+c_{0} a_{0} a_{1} a_{2} \\
& c_{4}=g_{3}+c_{3} a_{3}=g_{3}+g_{2} a_{3}+g_{1} a_{2} a_{3}+g_{0} a_{1} a_{2} a_{3}+c_{0} a_{0} a_{1} a_{2}
\end{aligned}
$$

The internal design of a 4- bit CLA is:

Fig. (4)- bit CLA module (m=4)
$E x$. Add $X=8_{10}=(1000) 2$, and $Y=9_{10}=(1001) 2$

Figure: Internal logic design of gap circuit.

Where
A: is a carry alive signal of the group " m " (where $\mathrm{m}=4$-bit) : $\quad A=\underset{i=0}{\mathrm{m-1}} a_{i}$
and G : is a carry generate signal of the group m ($m=4$-bit) :

$$
G=\underset{j=0}{m-1}\left(\begin{array}{c}
\underset{j}{m-1} \\
A N D \\
i=j+1
\end{array}\right) a_{i}
$$

